链式思考(CoT)提示

Chain-of-Thought Prompting

链式思考(CoT)提示

COT

图片来源:Wei等人(2022) (opens in a new tab)

Wei等人(2022) (opens in a new tab) 中引入的链式思考(CoT)提示通过中间推理步骤实现了复杂的推理能力。您可以将其与少样本提示相结合,以获得更好的结果,以便在回答之前进行推理的更复杂的任务。

提示:

这组数中的奇数加起来是偶数:4、8、9、15、12、2、1。
A:将所有奇数相加(9、15、1)得到25。答案为False。

这组数中的奇数加起来是偶数:17、10、19、4、8、12、24。
A:将所有奇数相加(17、19)得到36。答案为True。

这组数中的奇数加起来是偶数:16、11、14、4、8、13、24。
A:将所有奇数相加(11、13)得到24。答案为True。

这组数中的奇数加起来是偶数:17、9、10、12、13、4、2。
A:将所有奇数相加(17、9、13)得到39。答案为False。

这组数中的奇数加起来是偶数:15、32、5、13、82、7、1。
A:

输出:

将所有奇数相加(15、5、13、7、1)得到41。答案为False。

哇!我们可以看到在提供推理步骤时得到了完美的结果。实际上,我们可以通过提供更少的示例来解决此任务,即仅一个示例似乎就足够了:

提示:

这组数中的奇数加起来是偶数:4、8、9、15、12、2、1。
A:将所有奇数相加(9、15、1)得到25。答案为False。

这组数中的奇数加起来是偶数:15、32、5、13、82、7、1。
A:

输出:

将所有奇数相加(15、5、13、7、1)得到41。答案为False。

请记住,作者声称这是足够大的语言模型才会出现的新兴能力。

零样本 COT 提示

Zero-shot COT

图片来源:Kojima等人(2022) (opens in a new tab)

最近提出的一个新想法是 零样本CoT (opens in a new tab)( Kojima 等人,2022年),它基本上涉及将“让我们逐步思考”添加到原始提示中。让我们尝试一个简单的问题,看看模型的表现如何:

提示:

我去市场买了10个苹果。我给了邻居2个苹果和修理工2个苹果。然后我去买了5个苹果并吃了1个。我还剩下多少苹果?

输出:

11个苹果

答案是不正确的!现在让我们尝试使用特殊提示。

提示:

我去市场买了10个苹果。我给了邻居2个苹果和修理工2个苹果。然后我去买了5个苹果并吃了1个。我还剩下多少苹果?

让我们逐步思考。

输出:

首先,您从10个苹果开始。
您给了邻居和修理工各2个苹果,所以您还剩下6个苹果。
然后您买了5个苹果,所以现在您有11个苹果。
最后,您吃了1个苹果,所以您还剩下10个苹果。

令人印象深刻的是,这个简单的提示在这个任务中非常有效。这在您没有太多示例可用于提示时特别有用。

自动思维链(Auto-CoT)

当使用思维链提示时,这个过程需要手工制作有效且多样化的例子。这种手动工作可能会导致次优解决方案。Zhang et al. (2022) (opens in a new tab) 提出了一种消除人工的方法,即利用 LLMs “让我们一步一步地思考” 提示来生成一个接一个的推理链。这种自动过程仍然可能在生成的链中出现错误。为了减轻错误的影响,演示的多样性很重要。这项工作提出了Auto-CoT,它对具有多样性的问题进行采样,并生成推理链来构建演示。

Auto-CoT 主要由两个阶段组成:

  • 阶段1:问题聚类:将给定问题划分为几个聚类
  • 阶段2:演示抽样:从每组数组中选择一个具有代表性的问题,并使用带有简单启发式的 Zero-Shot-CoT 生成其推理链

简单的启发式方法可以是问题的长度(例如,60 个 tokens)和理由的步骤数(例如,5 个推理步骤)。这鼓励模型使用简单而准确的演示。

该过程如下图所示:

AUTOCOT

图片来源:Zhang等人(2022) (opens in a new tab)

Auto-CoT 的代码可在这里找到:Github (opens in a new tab)